Showing posts with label Biology. Show all posts
Showing posts with label Biology. Show all posts

For a newly evolving protist, what would be the advantage of using eukaryote-like cell division rather than binary fission?

For a newly evolving protist, what would be the advantage of using eukaryote-like cell division rather than binary fission? 





A) Binary fission would not allow for the formation of new organisms.
B) Cell division would allow for the orderly and efficient segregation of multiple linear chromosomes.
C) Cell division would be faster than binary fission.
D) Cell division allows for lower rates of error per chromosome replication.
E) Binary fission would not allow the organism to have complex cells.






Answer: B

The centromere is a region in which

The centromere is a region in which 






A) chromatids remain attached to one another until anaphase.
B) metaphase chromosomes become aligned at the metaphase plate.
C) chromosomes are grouped during telophase.
D) the nucleus is located prior to mitosis.
E) new spindle microtubules form at either end.







Answer: A

Which observation suggested to Sutherland the involvement of a second messenger in epinephrine's effect on liver cells?

Which observation suggested to Sutherland the involvement of a second messenger in epinephrine's effect on liver cells? 







A) Enzymatic activity was proportional to the amount of calcium added to a cell-free extract.
B) Receptor studies indicated that epinephrine was a ligand.
C) Glycogen breakdown was observed only when epinephrine was administered to intact cells.
D) Glycogen breakdown was observed when epinephrine and glycogen phosphorylase were combined.
E) Epinephrine was known to have different effects on different types of cells.







Answer: C

Apoptosis involves all but which of the following?

Apoptosis involves all but which of the following? 






A) fragmentation of the DNA
B) cell-signaling pathways
C) activation of cellular enzymes
D) lysis of the cell
E) digestion of cellular contents by scavenger cells






Answer: D

Lipid-soluble signaling molecules, such as testosterone, cross the membranes of all cells but affect only target cells because

Lipid-soluble signaling molecules, such as testosterone, cross the membranes of all cells but affect only target cells because 





A) only target cells retain the appropriate DNA segments.
B) intracellular receptors are present only in target cells.
C) most cells lack the Y chromosome required.
D) only target cells possess the cytosolic enzymes that transduce the testosterone.
E) only in target cells is testosterone able to initiate the phosphorylation cascade leading to activated transcription factor.






Answer: B

Binding of a signaling molecule to which type of receptor leads directly to a change in the distribution of ions on opposite sides of the membrane?

Binding of a signaling molecule to which type of receptor leads directly to a change in the distribution of ions on opposite sides of the membrane? 





A) receptor tyrosine kinase
B) G protein-coupled receptor
C) phosphorylated receptor tyrosine kinase dimer
D) ligand-gated ion channel
E) intracellular receptor





Answer: D

Phosphorylation cascades involving a series of protein kinases are useful for cellular signal transduction because

Phosphorylation cascades involving a series of protein kinases are useful for cellular signal transduction because 





A) they are species specific.
B) they always lead to the same cellular response.
C) they amplify the original signal manyfold.
D) they counter the harmful effects of phosphatases.
E) the number of molecules used is small and fixed.






Answer: C

Humans have receptors for two kinds of beta adrenergic compounds such as catecholamines to control cardiac muscle contractions. Some are beta 1 receptors that promote increased heart rate. Other drugs, called beta blockers, slow heart rate. Smooth muscle cells, however, have beta 2 receptors, which mediate muscle relaxation. Blockers of these effects are sometimes used to treat asthma. Beta 2 antagonist drugs might also be used most effectively for which of the following?

Humans have receptors for two kinds of beta adrenergic compounds such as catecholamines to control cardiac muscle contractions. Some are beta 1 receptors that promote increased heart rate. Other drugs, called beta blockers, slow heart rate. Smooth muscle cells, however, have beta 2 receptors, which mediate muscle relaxation. Blockers of these effects are sometimes used to treat asthma.
Beta 2 antagonist drugs might also be used most effectively for which of the following? 







A) cardiac arrhythmias
B) increased gastric acid production
C) neuropathy of the extremities
D) increasing low blood pressure
E) decreasing peristalsis







Answer: D

Humans have receptors for two kinds of beta adrenergic compounds such as catecholamines to control cardiac muscle contractions. Some are beta 1 receptors that promote increased heart rate. Other drugs, called beta blockers, slow heart rate. Smooth muscle cells, however, have beta 2 receptors, which mediate muscle relaxation. Blockers of these effects are sometimes used to treat asthma. The use of beta 2 antagonist drugs may be useful in asthma because they may

Humans have receptors for two kinds of beta adrenergic compounds such as catecholamines to control cardiac muscle contractions. Some are beta 1 receptors that promote increased heart rate. Other drugs, called beta blockers, slow heart rate. Smooth muscle cells, however, have beta 2 receptors, which mediate muscle relaxation. Blockers of these effects are sometimes used to treat asthma.
The use of beta 2 antagonist drugs may be useful in asthma because they may 






A) increase constriction of the skeletal muscle of the chest wall.
B) increase heart rate and therefore allow the patient to get more oxygen circulated.
C) dilate the bronchioles by relaxing their smooth muscle.
D) override the beta blockers that the patient is already taking.
E) obstruct all G protein-mediated receptors.






Answer: C

Humans have receptors for two kinds of beta adrenergic compounds such as catecholamines to control cardiac muscle contractions. Some are beta 1 receptors that promote increased heart rate. Other drugs, called beta blockers, slow heart rate. Smooth muscle cells, however, have beta 2 receptors, which mediate muscle relaxation. Blockers of these effects are sometimes used to treat asthma. The description above illustrates which of the following?

Humans have receptors for two kinds of beta adrenergic compounds such as catecholamines to control cardiac muscle contractions. Some are beta 1 receptors that promote increased heart rate. Other drugs, called beta blockers, slow heart rate. Smooth muscle cells, however, have beta 2 receptors, which mediate muscle relaxation. Blockers of these effects are sometimes used to treat asthma.
The description above illustrates which of the following? 





A) Just because a drug acts on one type of receptor does not mean that it will act on another type.
B) Beta blockers can be used effectively on any type of muscle.
C) Beta adrenergic receptors must be in the cytosol if they are going to influence contraction and relaxation.
D) The chemical structures of the beta 1 and beta 2 receptors must have the same active sites.






Answer: A

Affinity chromatography is a method that can be used to purify cell-surface receptors, while they retain their hormone-binding ability. A ligand (hormone) for a receptor of interest is chemically linked to polystyrene beads. A solubilized preparation of membrane proteins is passed over a column containing these beads. Only the receptor binds to the beads. This method of affinity chromatography would be expected to collect which of the following?

Affinity chromatography is a method that can be used to purify cell-surface receptors, while they retain their hormone-binding ability. A ligand (hormone) for a receptor of interest is chemically linked to polystyrene beads. A solubilized preparation of membrane proteins is passed over a column containing these beads. Only the receptor binds to the beads.
This method of affinity chromatography would be expected to collect which of the following?






A) molecules of the hormone
B) molecules of purified receptor
C) G proteins
D) assorted membrane proteins
E) hormone-receptor complexes






Answer: B

Affinity chromatography is a method that can be used to purify cell-surface receptors, while they retain their hormone-binding ability. A ligand (hormone) for a receptor of interest is chemically linked to polystyrene beads. A solubilized preparation of membrane proteins is passed over a column containing these beads. Only the receptor binds to the beads. When an excess of the ligand (hormone) is poured through the column after the receptor binding step, what do you expect will occur?

Affinity chromatography is a method that can be used to purify cell-surface receptors, while they retain their hormone-binding ability. A ligand (hormone) for a receptor of interest is chemically linked to polystyrene beads. A solubilized preparation of membrane proteins is passed over a column containing these beads. Only the receptor binds to the beads.
When an excess of the ligand (hormone) is poured through the column after the receptor binding step, what do you expect will occur? 





A) The ligand will attach to those beads that have the receptor and remain on the column.
B) The ligand will cause the receptor to be displaced from the beads and eluted out.
C) The ligand will attach to the bead instead of the receptor.
D) The ligand will cause the bead to lose its affinity by changing shape.
E) The reaction will cause a pH change due to electron transfer.






Answer: B

A major group of G protein-coupled receptors contains seven transmembrane a helices. The amino end of the protein lies at the exterior of the plasma membrane. Loops of amino acids connect the helices either at the exterior face or on the cytosol face of the membrane. The loop on the cytosol side between helices 5 and 6 is usually substantially longer than the others. If you wish to design an experiment to block the G protein-coupled receptor interaction, the block would preferentially affect which of the following?

A major group of G protein-coupled receptors contains seven transmembrane a helices. The amino end of the protein lies at the exterior of the plasma membrane. Loops of amino acids connect the helices either at the exterior face or on the cytosol face of the membrane. The loop on the cytosol side between helices 5 and 6 is usually substantially longer than the others.
If you wish to design an experiment to block the G protein-coupled receptor interaction, the block would preferentially affect which of the following? 






A) the exterior (cytoplasmic) end of the receptor
B) the cytosolic end of the receptor
C) the phospholipid's transmembrane domain
D) the amino acid sequence in the binding site for the G protein
E) the amino acids in the binding site for the transduction molecules







Answer: D

A major group of G protein-coupled receptors contains seven transmembrane a helices. The amino end of the protein lies at the exterior of the plasma membrane. Loops of amino acids connect the helices either at the exterior face or on the cytosol face of the membrane. The loop on the cytosol side between helices 5 and 6 is usually substantially longer than the others. The coupled G protein most likely interacts with this receptor

A major group of G protein-coupled receptors contains seven transmembrane a helices. The amino end of the protein lies at the exterior of the plasma membrane. Loops of amino acids connect the helices either at the exterior face or on the cytosol face of the membrane. The loop on the cytosol side between helices 5 and 6 is usually substantially longer than the others.
The coupled G protein most likely interacts with this receptor 






A) at the NH3 end.
B) at the COO– end.
C) along the exterior margin.
D) along the interior margin.
E) at the loop between H5 and H6.







Answer: E

A major group of G protein-coupled receptors contains seven transmembrane a helices. The amino end of the protein lies at the exterior of the plasma membrane. Loops of amino acids connect the helices either at the exterior face or on the cytosol face of the membrane. The loop on the cytosol side between helices 5 and 6 is usually substantially longer than the others. Where would you expect to find the carboxyl end?

A major group of G protein-coupled receptors contains seven transmembrane a helices. The amino end of the protein lies at the exterior of the plasma membrane. Loops of amino acids connect the helices either at the exterior face or on the cytosol face of the membrane. The loop on the cytosol side between helices 5 and 6 is usually substantially longer than the others.
Where would you expect to find the carboxyl end? 






A) at the exterior surface
B) at the cytosol surface
C) connected with the loop at H5 and H6
D) between the membrane layers






Answer: B